

Une utilisation ancienne et connue

- Médical
- Automobile
- Alimentaire

Dépend de la fréquence et de la puissance

- Dyogéna: environ 20 KHz (Haute Puissance)
- Conductible dans un liquide (action en tout point du fluide)
- Génère un phénomène de cavitation

Procédé mobile: Traitement au chai

3 composantes majeures

Générateur

Transducteur

PROCEDE DYOGENA

DYOGÉNA ASEPTISATION · DÉTARTRAGE · HYGIÈNE

Etape 1

Remplissage du fût avec une eau à 60°C

- Action en tout point du fluide
- Brise les cristaux de tartre
- Eclate les parois cellulaires des microorganismes
- microorganismes
 Extirpe le vin résiduel contenu dans les douelles

Effet thermique en profondeur

Bulles cavitation microscopique

Taille < 1 µm

Etape 2

Mise sous-pression Pénétration de l'eau chaude à l'intérieur des pores du bois

Ultrasons Haute Puissance (20 kHz)

- Dyogéna: une société tournée vers la recherche et l'innovation
 - 12 mois de R&D (2013)
 - 18 mois de validation des résultats obtenus (décembre 2013 juin 2015)
- Mise en place d'un projet de recherche « Ultrasons Haute Puissance »
 - Labellisé Inno'vin et cofinancée par la région Aquitaine
 - Réalisée en collaboration avec l'ISVV de Bordeaux
 - Laboratoire « Génie des procédés » (M. Mietton-Peuchot, R. Ghidossi)
 - Cellule transfert « Amarante Process »
 - Objectif:
 - Etudier l'impact global du procédé sur la qualité du vin
 - Approfondir les connaissances des mécanismes en jeu

DYOGÉNA ASEPTISATION: DÉTARTRAGE: HYGIÈNE

Détartrage en profondeur

Avant traitement

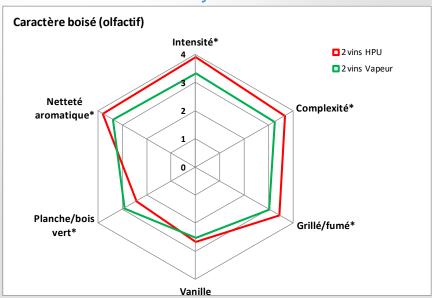
Après traitement

A

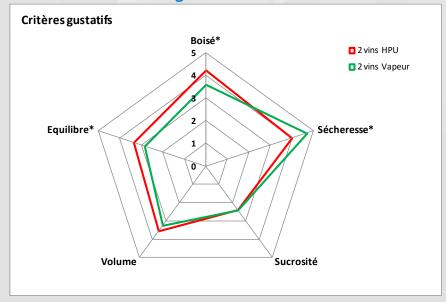
Efficacité du détartrage:

- Action de dilatation des pores du bois par la chaleur
- Pénétration des bulles de cavitation en profondeur dans les pores du bois (pore: 150µm)
- Détartrage des pores du bois en profondeur

Pour un résultat impressionnant:


- Pas d'altération de la chauffe
- Meilleure surface d'échange entre la chauffe du bois et le vin
- Régénération du fût

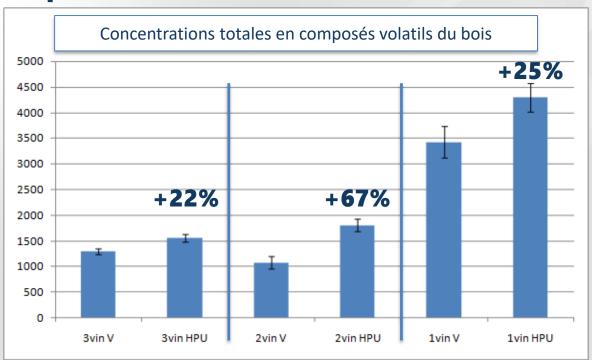
Un fût quasiment neuf



Analyses sensorielles

- Panel: 33 dégustateurs professionnels
- Echantillons anonymes

• * = différences significatives


Traitement Ultrasons: Dégradation moins forte du caractère boisé et élévation de la qualité organoleptique du vin

Boisé plus « net », plus « fondu », diminution de la sécheresse en bouche

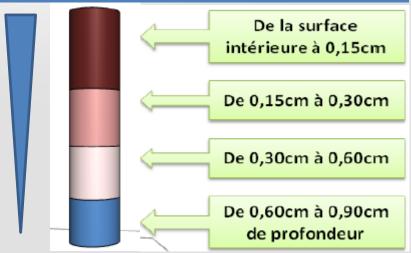
Analyses chimiques

Traitement Ultrasons: Maintien une concentration plus forte des composés volatils du bois

Traitements sur douelles neuves

HF		Vapeur 10 minutes				
	Avant	Après	Différence	Avant	Après	Différence
Furfural	4176	3995	-4.3%	5243	3021	-42.4%
5-MethylFurfural	684	684	0.0%	586	361	-38.4%
Guaïacol	10	10	0.0%	10	10	0.0%
Trans Lactones	10	10	0.0%	10	10	0.0%
Cis Lactones	10	10	0.0%	12	10	-16.7%
Methyl-4-Guaïacol	10	10	0.0%	12	10	-16.7%
Eugenol	16	16	0.0%	18	11	-38.9%
Isoeugénol	16	16	0.0%	15	12	-20.0%
Syringol	10	10	0.0%	11	10	-9.1%
5HydroxyMethylFurfura	223	223	0.0%	233	94	-59.7%
Vanilline	413	306	-25.9%	588	428	-27.2%
Syringaldehyde	760	563	-25.9%	1619	948	-41.4%
Ensemble COV aromatiques			-4.7%			-25.9%

- Vapeur: Dégradation plus importante des composés aromatiques du bois
- Ultrasons Haute Puissance: respect des composés aromatiques du bois



Problème Brettanomyces (et autres levures ou bactéries)

- Présence et survie en profondeur dans le bois (9mm)
- Elimination difficile car le bois est une structure poreuse
- Contamination du vin → défaut olfactif

Concentration en Brettanomyces

Aseptisation du fût (levures et bactéries)

Concentration (cell/g de bois)

Douelles	Traitements	Profondeurs prélèvements	Avant traitement	Après traitement
1 élevage		0-2 mm	5,4.10 ⁷	0
	HPU 5 mn	2-5 mm	7,8.10 ⁵	0
		5-9 mm	1,7.10 ⁴	0
		0-2 mm	6,2.10 ⁷	0
	Vapeur 10 mn	2-5 mm	5,1.10 ⁵	8,3.10 ⁴
		5-9 mm	4,3.10 ⁴	3,9.10 ⁴
2 élevages		0-2 mm	1,3.108	٥
	HPU 5mn	2-5 mm	1,2.10 ⁶	0
		5-9 mm	4,1.10 ⁵	0
		0-2 mm	8,2.10 ⁷	0
	Vapeur 10 mn	2-5 mm	5,6.10 ⁶	9,1.10 ⁴
		5-9 mm	5,1.10 ⁵	4,3.10 ⁵

- Traitement Ultrasons Haute Puissance: élimination totale jusqu'à 9 mm de profondeur
 - → éclatement des membranes cellulaires (Piyanesa et al 2003)
- Effets synergiques entre les ultrasons et la chaleur (Lopez-Malo et al 2005)

Les Ultrasons Haute Puissance: Seule technologie 100% efficace contre les levures et bactéries <u>sans utilisation d'intrants chimiques</u>

- Nettoyage et détartrage complet et en profondeur des contenants bois de 225 à 600 litres avec la même efficacité
- Garantie totale de l'élimination des Brettanomyces et bactéries acétiques jusqu'à 9mm dans le bois aussi bien en préventif qu'en curatif
- Des vins plus « net », « rond », « intense » grâce à une dégradation très faible des composés aromatiques du bois (régénération du fût) par rapport au traitement vapeur
- Gain financier important par l'augmentation de la durée de vie du fût

- Extraction complète du SO2 avant entonnage des vins, aucun risque de « relarguage »
- Procédé totalement respectueux de l'environnement
 - Circuit fermé, recyclage de l'eau
 - 1 M3 d'eau pour une journée de traitement (40 à 60 fûts)
 - 1,33 KWh par fût consommé
- Souplesse et disponibilité grâce à des unités mobiles

Une solution 100% gagnante